hammer-io

PrOJECT PLAN

Team: sdmay18-19
Client/Adviser: Lotfi Ben-Othmane
Members:
Erica Clark - Data Analytics Lead & Website/Content Management
Nathan De Graaf - Asana Expert & Weekly Status Reports
Nathan Karasch - Project Manager & Technical Writing
Jack Meyer - Communications & Software Architecture
Nischay Venkatram - Ul Lead & Node.js SME
Email: sdmayi8-19@iastate.edu

Website: sdmayi8-19.sd.ece.iastate.edu

Revised: 5 Dec 2017 (version 3)

mailto:sdmay18-19@iastate.edu
http://sdmay18-19.sd.ece.iastate.edu/

Contents

i- List of Tables and Figures
ii - Acronyms and Definitions
1- Introduction
1.1 - Project statement
1.2 - Purpose
1.3 - Goals
2 - Deliverables
3 - Design
3.1 - Previous work/literature
3.1.1 - Spring Boot
3.1.2 - Docker
3.1.3 - Travis CI
3.1.4 - IBM Bluemix (now IBM Cloud)
3.2 - Proposed System Block diagram
3.3 - Flowchart of Project Generation with the CLI
3.4 - Assessment of Proposed methods
4 - Test Plan
4.1 - Validation
4.2 - Verification
4.2.1 - Continuous Integration & Automated Testing
4.2.2 - Manual Testing
5 - Project Requirements/Specifications
5.1 - Functional
5.1.1 - Automated DevOps process for Node.Js applications

5.1.2 - Framework to develop Node.Js microservice applications

S~ K~ A

i

10

11

11

1

12

12

12

12

12

12

13

Pace 1

5.1.3 - Monitoring Interface 13

5.2 - Nonfunctional 13
5.3 - Standards 14
5.4 - Functional and Nonfunctional Requirements Validation 15
6 - Challenges 16
7 - Timeline 17
7.1 - First Semester 17
7.2 - Second Semester 17
8 - Conclusion 18
9 - References 19

Pace 2

i - List of Tables and Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6

The Spring Boot project generator
The Bluemix user dashboard
Proposed System Block Diagram
Tyr CLI Flowchart

First Semester Timeline

Second Semester Timeline

ii - Acronyms and Definitions

Cl
CD
CLI

DevOps

Docker
GUI
MS
Node.Js

Ul

Continuous Integration
Continuous Deployment
Command Line Interface

DevOps is a software engineering practice that aims at unifying software
development (Dev) and software operation (Ops).!

A container platform used for deploying distributed software applications.
Graphical User Interface

Microservice

A framework for running standalone JavaScript applications.

User Interface

! https://en.wikipedia.org/wiki/DevOps

10

17

17

Pace 3

https://en.wikipedia.org/wiki/DevOps

1 - Introduction

1.1- PRO]ECT STATEMENT

From the project abstract: “There is a tendency to develop software as a collection of managed
micro-services. Often these software are to be deployed to the cloud. The goal of this project is to
develop an environment to develop Javascript-based micro-services that exhibit specific quality
attributes and automated devOps process for managing the development and deployment of these
JavaScript micro-services.”

We seek to create a framework to automate the development and operation of microservices in
JavaScript using Node.js.

1.2 - PURPOSE

One paradigm of modern software development is the concept of using a collection of
microservices. However, in order for these services to be deployed to the cloud, a developer must
go through a significant amount of work to build an automated deployment process. The extra
overhead work represents a large barrier to surmount before even a simple “Hello World”
application can be created. This barrier can seriously hinder early startups, slow down
development, and stifle creativity and innovation. We seek to give developers a tool around this
problem.

By creating a framework for Node.js microservices, teams with limited knowledge, resources, and
time can quickly get started with a simple infrastructure. We also provide the tools and structure to
monitor and maintain the health of their applications in development and in production. This lets
more developers start making cool things faster.

1.3 - GOALs

The main goal of our project is to create an environment to develop JavaScript microservices as well
as a DevOps process to manage and monitor its deployment.

Specifically, we hope to create an app that requires minimal configuration and setup. This means
the user would download one or two different tools and then have scripts create most of the
configuration files needed with account info (e.g. GitHub, Docker Hub, etc.) supplied by the
developers. Easy-to-use CLI/GUI tools would be available to push, deploy, and create new
microservices.

Another goal that fits into this process is creating a seamless deployment workflow. This looks like
a user pushing code to a master branch and watching his or her changes reflected in the live
product a short while later. Once the application is deployed, the user then tracks the status of the
application through a Data Monitoring app, which can notify interested parties when a service goes
offline, display metrics related to server performance, etc. In addition, the Data Monitoring tool
should be able to perform load balancing between microservices.

Pace 4

2 - Deliverables

By the end of development for the project, we will have created three products:

1. An automated DevOps process for Node.Js applications,
2. A framework to develop Node.Js microservice applications, and
3. An interface to monitor the health and status of the deployed Node.js applications.

The first product we are going to develop is the automated DevOps process for Node.Js
applications. In this product, the user should have the ability to do the following:

Manage their development workflow

Have their code automatically pushed to a CI environment to have it tested and built

Have their code automatically packaged

Manually deploy and revert deployments of their application

Perform security analysis

View common DevOps statistics such as code coverage stats, code style stats, percentage of
build failures, status of builds, percentage of test failures, and time for task completion

The DevOps application will be able to be consumed in two different ways. The first is the CLI.
Here the user will be able to have the code base for their project automatically generated. This
should include the configuration files needed for the many services our application will be
connecting to. The web application will allow users to view statistics about the DevOps process,
manage the build and deployments of their services, and perform the same functions as the CLI.
The DevOps application should be able to be deployed on the user’s own server or be consumed
through our cloud service.

The second product we will create is the microservice development framework. This will be
distributed with the DevOps application in that it will use the CLI to generate new microservices in
the project and link them to existing services. As discussed in the timeline (section 7), this will be
one of the last pieces of the project that we implement. Because it will leverage the existing
foundations built in the DevOps application, it should be fairly straightforward to extend the CLI to
be able to generate the required microservice components.

The third product we are going to build is an interface to monitor the health and status of the
deployed Node.js applications. The user should have the ability to do the following:

e View uptime statistics about their deployed applications
e View data flow statistics (how much data is going in and out of the applications)
e View history about both of the above

The monitoring interface will be able to be consumed via a web application. Here the user will have
the ability to view the information listed above in a dashboard like interface. This functionality
should come out of the box and require no configurations if the user chooses this service for their
product. Again, this application should be able to be consumed through our cloud service or
deployed on the user’s own server.

Pace 5

3 - Design
3.1 - PREVIOUS WORK/LITERATURE

3.1.1 - Spring Boot

Spring Boot is an opinionated approach to the creating Spring Based Applications. The Spring
Framework is a Java framework which makes it very easy to make web based applications. Spring
Boot makes it easy to create applications in the Spring Framework by including third party libraries
and doing most of the configuration work. Spring Boot has the ability to make standalone
applications, which already include a server embedded. It automatically does configuration and
pom file generation, meaning it easy to get up-and-running quickly. Finally, it provides health
checks and metrics for the application.

Through the addition of some of the open source libraries such as Zuul, Hystrix, RabbitMQ, and
Eureka, Spring Boot has become the most common choice for creating a microservice architecture.
Spring Boot does many other things such as providing ways to register applications with Facebook
and Twitter and providing a uniform way to access data in Neo4J, MySQL, and MongoDB. Finally,
there are easy ways to automate the configuration of Docker to make the Spring Boot application
into a docker container.

This is only scratching the service of what this framework can do. We want to do some very similar
things with hammer-io. However, our product will live in a completely different domain. Instead of
Java, we will be targeting node.js developers. Below is a screenshot of the Spring Initializr?, a handy
means of generating a Spring Boot project on the web. We hope to provide a similar means of
project generation for our users.

SPRING INITIALIZR

Generate @ wveenroe {With == |and Spring Boot | :so !

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com. example Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

Name

demo

Description

Demo project for Spring Boot

Figure 1. The Spring Boot project generator.

2 https://start.spring.io/

Pace 6

https://start.spring.io/

3.1.2 - Docker

Docker is a widely-popular containerization platform that makes it easy to deploy software with
specific environment requirements. It’s sort of like a Virtual Machine, but it shares the kernel with
the host machine it runs on, so it can share many common processes, keeping it lightweight and
fast. There are many benefits of using docker, the first being that it takes the environment
complexity out of a project. If your software needs specific libraries and other versioned software in
the environment, it can be configured with a dockerfile, and those libraries and such will be sure to
exist in the docker container when it gets run. This means that it works the same on any machine
it’s run on, regardless of the machine’s environment.

Some other benefits include easier performance and traffic monitoring, since everything gets
bundled and executed as a single file. It also comes with a lot of “security by default” measures,
meaning they are turned on by default instead of requiring the user to manually turn them on.
Take isolation for example. If you have one container serving your web user interface and other
containers serving other services, if an attacker were to gain access to the web Ul container, he
would not be able to move laterally or escape the container to access files in another container or in
the root system. This is only one of the many security features that come with a docker container.

3.1.3 - Travis CI

Travis Cl is a continuous integration tool that is widely used across most open source projects and
by large companies like Facebook, Twitter, Mozilla, etc. It is compatible with a variety of different
languages like C, C++, C#, Clojure, D, Erlang, F#, Go, Groovy, Haskell, Java, JavaScript, Julia, Perl,
PHP, Python, R, Ruby, Rust, Scala and Visual Basic. Continuous integration tools like Travis CI,
allow users to build, test, and deploy applications.

The application is built and tested on the Travis CI servers/virtual machines. Users can choose to
deploy to their own servers or to external cloud hosting services like AWS, Heroku, Azure, etc. All
the required configurations are passed as a config file in the code repository. Travis CI also supports
Docker and can build, pull, and push images to external Docker registries. Travis CI can also be
integrated with code hosting platforms like GitHub, to run builds on code changes, new pull
requests, or commits.

Pace 7

3.1.4 - IBM Bluemix (now IBM Cloud)

“IBM Bluemix is a cloud platform as a service (PaaS) developed by IBM. It supports several
programming languages and services as well as integrated DevOps to build, run, deploy and
manage applications on the cloud.” Started in 2014, Bluemix offers the same sort of DevOps
platform that we are aiming to create, with several notable exceptions. The first major difference
between our product and Bluemix will be our focus on streamlined development of microservices
in Node.js. While Bluemix supports the Node.js language, it doesn’t emphasize microservice
architectures, nor does it bootstrap projects for you or enable the entire DevOps pipeline in a single
command.

A second notable exception is that most of Bluemix’s functionality is locked behind a paywall. Our
products, on the other hand, will be open-source and freely available for use.*

Finally, Bluemix aims to be a more all-around DevOps platform, supporting many languages and
integrations, so it doesn’t focus heavily on microservices in particular. Though it was recently
rebranded, the product is already three years old and fully funded by IBM, so it will obviously be
more fully featured than we can hope to achieve in two semesters. However, it can still serve as an
example for our product to model as we continue with development. The screenshot of the Bluemix
dashboard® shown below offers insight into what our own DevOps platform may look like in the
future.

4 IBM Bluemix DASHBOARD SOLUTIONS CATALOG PRICING DOC MUNITY ON: US South >

— /\ my-ti-app

g | Routes:

my-ti-app

Overview >

=) @ Your app is running.

SDK FOR 768.0 MB€

NODE.JS™

SERVICES
started my-ti-app app

Cloudal
stopped my-ti-app app
Internet of Things
started my-ti-app app
Internet of Cloudant ey
#ﬁ,} Things NoSQL DB PESCLIYEE o6P 200
fo> Internet of Thin... my-ti-app-clou...
otf-service-free Shared

started my-ti-app app

Show Credentials Show Credentials

Figure 2. The Bluemix user dashboard.

> https://en.wikipedia.org/wiki/Bluemix

4 Our product will be freely available for use; however, for those wishing to use it as teaching
material in a class, they must gain express permission from the project owners/maintainers.
5 https://console.bluemix.net/

Pace 8

https://en.wikipedia.org/wiki/Bluemix
https://console.bluemix.net/

3.2 - PROPOSED SysTEM BLOCK DIAGRAM

The following is the proposed system block diagram for the deployed web application portion of
the project. The user has the option of generating a project from the CLI or downloading a zip
archive of the files generated by the web platform. Once the project is created, it gets pushed to
Source Control (GitHub) by the CLI, enabled in the Continuous Integration suite (TravisCI), and
deployed to the Cloud Hosting platform (Heroku). The TravisCI automation, which runs static and
dynamic tests, is triggered by web hooks in the GitHub repository. Tests are run on code pushes,
merges, and pull requests, and upon merging to master it is setup to deploy a docker container of
the app to Heroku.

The DevOps Monitoring Platform provides the graphical user interface to monitor various aspects
of the project: hosting uptime, test results, code coverage, repository statistics, etc.

Docker Cloud Hosting

Container (Heroku)

Monitor hosting, test results,
code coverage, repository
statistics, and other metrics

Deploys

Continuous Code Coverage
Integration Integration
(TravisCl) Run Tests

DevOps/
Microservices

DevOps

Hooks into / triggers

Monitoring

Framework

Platform (Tyr CLI)

Source Control
(GitHub)

@ Push to / Pull from

e ——— Enables

Generates

Monitor Project

Project
Internet

User’s Local

Machine DevOps/
Generates Project

Files Microservices

Framework
(Tyr CLI)

User Microservices

Project

Figure 3. Proposed System Block Diagram

Pace 9

3.3 - FLOowWCHART OF PROJECT GENERATION WITH THE CLI

As mentioned above, the CLI will setup the user’s microservices project with a DevOps workflow. It
takes various information about the project as input, as well as which 3rd party integrations the

user wants to use, and generates the project files. If the user has selected integrations for source
control, continuous integration, deployment, etc., the CLI will also push the code to the repository
and initialize all appropriate environments upon generation of the project files. Below is a flowchart
outlining some of the functionality provided by the CLI.

$ npm install tyr-cli --global

$ tyr [--config <file>]
[--logfile <file>]

User

Y

Exit :
Unsuccessful

Exit :
Success!

cli.js
run(program)

Tyr CLI
Flowchart

Enable logging to

file

A 2

Prompt user for
configuration
details

Sign into 3rd
Party Tools

Valid responses?

Figure 4. Tyr CLI Flowchart

Generate project files
Create GitHub repository™
Enable Heroku deployment™
Enable TravisCI*

Push code to GitHub*
Run “npm install’

* (if applicable)

Pace 10

3.4 - ASSESSMENT OF PROPOSED METHODS

Since a majority of the project involves standardizing around different tools and bringing them into
one unified workflow, we had a plethora of options to choose from. For a Continuous integration
tool in our framework, we decided to go ahead with Travis CI. Jenkins was the other option
available, but our focus audience for this project were small teams, students, and startups. Travis CI
takes care of building and testing the application on their own servers, while Jenkins would need to
installed on a personal server or a cloud hosting service. Given that smaller teams and startups do
not have the resources to manage and maintain additional servers, Travis CI was the logical choice.

In terms of deployment and architecture, the traditional approach would be to develop a huge
monolithic application, build it as a whole, and deploy it. The other route was using Docker and
mircroservice architecture to containerize any application into smaller isolated components for
additional benefits like scalability, load balancing, and more uptime. For example, suppose there
are two services — payments service and authentication service. Should the payments service crash,
the authentication service will be unaffected and will continue to function normally. In addition,
Docker lets us spin up new containers of the payments service, should it crash, or if the number of
requests that need to be processed is high. Enforcing this architecture and helping build such
applications using our framework seemed like the correct approach.

4 - Test Plan

4.1 - VALIDATION

The project will be built in an escalating series of prototypes, each of which adds another layer of
integration with additional software. This iterative development will allow us to continually analyze
if our solution is valid. That is, we will continually assess the product to ensure it meets the
business goals of the client. This validation with the client takes place at weekly meetings where we
demo our progress and brief the client on the direction and planned development for the following
week.

Through our initial research, we have discovered that there are many possible software options for
each piece of functionality we need. If a software choice fails to integrate nicely with the rest of the
project, we have the option of trying other options for that function.

For example, suppose we are integrating a code coverage tool to run during the continuous
integration operations. There are several solid options, including CodeCov, Blanket.js, Istanbul, and
Coveralls. Suppose we try to integrate CodeCov with the prototype, but there is a conflict with a
previously-selected tooling. We have the option of choosing a different piece of software for code
coverage, or we can revisit the other piece of software that we selected before. Upon reaching that
decision point, we will confer with the client and assess which direction would better suit his end
goal and meet the needs of the end user. In this manner, we can continue to make development
progress on the project with continual validation as we complete each iteration.

Pace 1

4.2 - VERIFICATION

In order to make sure that each portion of our project meets both functional and nonfunctional
requirements, we will verify our products in several ways:

4.2.1 - Continuous Integration & Automated Testing

First, we will have an automated test suite (facilitated by TravisCI) connected to our code
repository. This test suite will be run in Travis for every commit to the repository. This test suite
will, to the best of our abilities, cover all areas of our code base. It includes all types of testing (Unit
Testing, Integration Testing, etc.) other than System Testing and Acceptance Testing. Merging
from a feature branch to master cannot happen unless all tests are passed, and reviewers will
ensure code authors have written unit tests for new code. This will ensure that when a new feature
is added, previous features have not regressed.

4.2.2 - Manual Testing

Manual testing will be the means of conducting System Testing and Acceptance Testing. We will
manually test the code upon integration of new features and functionality. This will ensure that
both the functional and nonfunctional requirements are being met. We will also demo our
application to our client at the weekly meetings when a new feature has been implemented. By
demoing to our client, we will ensure that the vision and the goals of the project are being met.

5 - Project Requirements/Specifications

5.1 - FUNCTIONAL

5.1.1 - Automated DevOps process for Node.Js applications

e Provides a CLI, which contains commands to:
o Setup a new project (generates default configuration files) based on the services
that a user wants to include
o Serve the web application version of the CLI, which must:
m Allow the user to select which services he/she wants to include in a new
project
m Download the default files for a new project based on the services that a
user wants to include
m View reports, results, and statistics about the DevOps process
m Manage the build and deployment of services
o Automate delivery of code to the CI environment, which must:
Build the application
Package the application in a Dockerfile
Run test suites
m Report status and results
e Ability to configure various services with a configuration file

e Provides documentation for configuration

PAcE 12

e Provides statistics, reports, and analytics about the development process
o Issue completion
o Development time per issue
o Code Coverage
o Build information

5.1.2 - Framework to develop Node.Js microservice applications

e Provides a CLI, which contains commands to:
o Generate Node.Js templates for new microservices
o Integrate new microservices into the existing microservice architecture
o Configure the microservices (host, port, etc)

5.1.3 - Monitoring Interface

e A web application, which must:
o Provide useful statistics, reports, and analytics about the deployed microservices
m Uptime statistics
m Data usage
o Allow reports and logs to be downloaded

5.2 - NONFUNCTIONAL

e Usability
o The system will only support the English language
o The CLI must have a clean, consistent look and feel
o The web application must have a clean, consistent look and feel
o The application will be usable by those who have a limited understanding of
DevOps
e Supportability
o The system will support Unix-based systems (e.g. Mac or Linux)
o The system will support Node.Js version 8.x
e Reliability
o The deployed web applications will run 24 hours a day, 7 days a week
o Uptime for deployed web applications shall be >99%.
e Security
o The system will not store any plain-text passwords in configuration files or
elsewhere

Pace 13

5.3 - STANDARDS

The team will used the following standards during development of the project:

e Version Control System

o Git will be used as the primary means of version control for all project code.

o The Google software suite (Docs, Sheets, etc) will be used for all formatted
documentation, such as planning and design documents. It has version control
features that can accessed from the menu (File — Version history).

e Code Review

o Development will be done in feature branches.

o When a feature branch is ready to be merged to the master branch, the author will
assign one or more of the other project members as a reviewer.

o Reviewers must check to ensure the code:

m correctly implements the desired functionality

m contains sufficient tests to ensure correctness

m passes tests

m s free of errors

m integrates successfully with the existing software

o Reviewers will communicate code issues to the author, who is then responsible for
addressing all issues.

o Once the code has passed inspection, it can be merged to master.

e Testing Standards

o Unit Tests:

m Unit tests shall be written for all code committed to the repository.

m The author of the code is responsible for its unit tests, and the code
reviewers are responsible for holding the author accountable.

o Integration Tests:

m Once a significant number of components have been integrated, tasks will
be created and assigned to developers to write integration tests.

m The integration tests should ensure the subset of components behave
together as intended.

o System and Acceptance Testing

m Manual testing by developers will be the standard for System Testing. This
will take place upon merging new code and upon completion of major
portions of functionality.

m Product demos to the client will be the standard for Acceptance Testing.
These take place on a weekly basis at the team meeting.

o Code Coverage:

m We will install a code coverage tool into the continuous integration suite
to report what level of test coverage we have achieved. Given the short
time frame of the project and the rapid pace at which a new project is
developed, we likely won't shoot for a hard code coverage metric until the
second semester. At that point we will evaluate whether code coverage
makes sense in the context of our project and what percentage we should
be targeting.

Pace 14

5.4 - FUNCTIONAL AND NONFUNCTIONAL REQUIREMENTS VALIDATION

As mentioned previously, validation is conducted through manual testing. It is roughly outlined as

follows:

Verify documentation at the project website meets documentation requirements.
Manually verify the deployed web applications meet the functional and nonfunctional
requirements outlined above.

e Verify the usage of the CLI from the command line meets requirements:

o Without configuration file:

Run: "npm install --global tyr-cli’

Run: "tyr’

Follow the prompts, and input information for a new project.

Enter any user credentials for services you have selected.

Verify project files were created successfully.

Verify code was pushed to the code repository (if applicable)

Verify unit tests were run in the continuous integration suite (if
applicable)

Verify the new project was deployed to the selected hosting environment
(if applicable)

o With configuration file:

Create a configuration file config.json for a new project (follow format
given in documentation)

Run: "tyr --config config.json’

Enter any user credentials for services you have selected.

Verify project files were created successfully.

Verify code was pushed to the code repository (if applicable)

Verify unit tests were run in the continuous integration suite (if
applicable)

Verify the new project was deployed to the selected hosting environment
(if applicable)

Pace 15

6 - Challenges

The most significant challenge our group faces is defining the scope and direction of our project.
We do not have a single clear client or use case; rather we are developing a tool that can be adopted
and adapted by the open source community for various JavaScript microservice DevOps needs. Our
group must initially spend a lot of time thinking about which use cases to prioritize and what types
of users to cater to. For example, consider a large established company, a small startup, and an
academic class of students. Each will have different resources, skills, and needs.

Our product is not unique in its market, so various competitors will be challengers for our group
and product. Some of these tools are professionally developed and maintained, so our product must
be especially well-suited to a specific need that these other DevOps and automated development
tools are not meeting.

We hope cost will not become a challenge for our group; however, since our project is likely to be
using services from various other products, we may run into paywalls at some point when scaling or
accessing APIs. We hope our product will be free to use; however, as a user scales, they may be
required to pay for subservices.

Our group has a remarkably strong collective knowledge of the area, including tools, processes, and
best industry practices. However, one challenge could be a lack of user empathy as a result of few of
the team members having ever worked in developing javascript microservices. Hopefully our
advisor/client will be able to provide this knowledge and guidance for our group.

Pace 16

7 - Timeline

7.1 - FIRST SEMESTER

The following is a Gantt chart outlining the proposed timeline for the project’s development
through the first semester. The blue bars indicate project phases.

‘ Build CLI tool for app generation

Aug Sept Oct Mow Dec
wi [w2 [wa [wa w1 w2 [w3 [wa w1 |[w2|wa|was|ws[w2|[wa|ws|w]|w2]|ws|ws
Requirements gathering
| Research |

| Web app setup |

Demos

Figure 5. First Semester Timeline

The first few weeks of the project, we will spend time understanding the requirements, researching,
and prototyping. Most of our design thinking will happen here and we'll make sure to meet with
the client often in order to get the requirements. After we finish the first few weeks, we will start
work on the command line tool to build an application and deploy it from scratch. We plan to
spend a decent part of the semester building the CLI. Early November, we plan to transition to
architecting and building the web app where users can set up, deploy, and monitor the deployed
applications. Most of the work for the web app will continue into the next semester.

7.2 - SECOND SEMESTER

The following is a Gantt chart outlining the proposed timeline for the project’s development
through the second semester. The blue bars indicate project phases.

Jan Feh Mar Apr
wi (w2 | w3 |wa |wr w2 |wa|wa|ws[wz2|wa|ws|wi|w2|ws|ws
Monitoring Web application

| Deployment Web application |
| Development framework
Testing, Validation, Polishing

Figure 6. Second Semester Timeline

The plan for the first 2 months is to continue working on the web application to monitor and
deploy microservice applications. There will be some overlap while working on the monitoring
solution and deployment solution. We will continuously test and validate the solution. In early to
mid March the plan is to slowly transition to developing the development framework that will
allow users to code scalable microservice applications. We plan to wrap everything up by the end of
April.

Pace 17

8 - Conclusion

The popularity, simplicity, and usefulness of JavaScript microservices means there is a need from
users for an easy to use and an all encompassing framework and devops systems to build and
deploy these JavaScript services. The goal of this project is to meet these needs. Hammer seeks to
provide three main parts: an automated deployment process, a Node.js framework to accommodate
and enable microservices, and a data monitoring platform to monitor the health and metrics of the
entire system.

In order to achieve this functionality, our team plans to implement the following three parts of the
overall product. First we build a DevOps application to manage the code base of the service. This
can be managed through either a CLI or a web application. Building these applications will be the
first step of the project. Once finished with this portion, the user should be able to deploy their
own service to be consumed by their users through our application. Second, we will create a
monitoring application that will build upon the DevOps web application. This shows the users all
relevant information about their information including logs, load, uptime, etc. This monitoring
application is part of the features that makes our application better for our clients than managing
each of these services individually. Finally, we create a framework to allow users to write these
microservices in NodeJS. More details and plan for implementation to come.

Hammer, our solution to all JavaScript microservice development needs, seeks to meet the specific
needs of our users in a way that other similar services cannot match. Our application’s opinionated
approach of setting up a suggested approach without the user needing any specialized knowledge
makes Hammer the perfect choice for students or small teams that cannot afford to waste time or
resources setting up and managing the logistics of their application. By focusing on simplicity, ease
of use, and specializing in JavaScript microservices, our application can provide a better service
than any other general DevOps or development framework service.

Pace 18

9 - References

https://www.docker.com/

https://docs.docker.com/engine/security/security/

https://hub.docker.com/

https://docs.docker.com/engine/swarm/
https://projects.spring.io/spring-boot/
https://github.com

https://about.gitlab.com/
https://bitbucket.org/
https://sourceforge.net/

https://www.sonarsource.com/products/codeanalyzers/sonarjs.html

http://www.veracode.com/products/static-analysis-sast/static-analysis-tool

https://scan.coverity.com/
https://geekflare.com/nodejs-security-scanner/
https://codecov.io/

http://blanketjs.org/
https://github.com/gotwarlost/istanbul
https://coveralls.io/
https://karma-runner.github.io/0.8/index.html
https://circleci.com/docs/1.0/language-nodejs/
https://travis-ci.org/
http://www.shippable.com/

https://jenkins.io/

https://codefresh.io/

https://kubernetes.io/
http://mesos.apache.org/
https://mesosphere.github.io/marathon/

http://www.shippable.com/
https://en.wikipedia.org/wiki/Bluemix

https://console.bluemix.net/

Pace 19

https://www.docker.com/
https://docs.docker.com/engine/security/security/
https://hub.docker.com/
https://docs.docker.com/engine/swarm/
https://projects.spring.io/spring-boot/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://sourceforge.net/
https://www.sonarsource.com/products/codeanalyzers/sonarjs.html
http://www.veracode.com/products/static-analysis-sast/static-analysis-tool
https://scan.coverity.com/
https://geekflare.com/nodejs-security-scanner/
https://codecov.io/
http://blanketjs.org/
https://github.com/gotwarlost/istanbul
https://coveralls.io/
https://karma-runner.github.io/0.8/index.html
https://circleci.com/docs/1.0/language-nodejs/
https://travis-ci.org/
http://www.shippable.com/
https://jenkins.io/
https://codefresh.io/
https://kubernetes.io/
http://mesos.apache.org/
https://mesosphere.github.io/marathon/
http://www.shippable.com/
https://en.wikipedia.org/wiki/Bluemix
https://console.bluemix.net/

