
Team
sdmay18-19
Erica Clark

Nathan De Graaf
Nathan Karasch

Jack Meyer
Nischay Venkatram

Advisor / Client
Lotfi Ben-Othmane

Hammer-IO
An online platform to build, deploy, and monitor
microservice applications in Node.js

Problem
The development and deployment of
microservice applications to the cloud is
a complex process that requires signif-
icant resources and domain expertise.
Students and small startups with limited
knowledge, resources, or time are faced
with a significant barrier when beginning a
microservice application.

Solution
Hammer-IO provides an online platform
to build, deploy, and monitor microservice
applications in Node.js.

Users
•	Small Teams
•	Startups
•	Students
•	Developers with limited

time & resources

Usages
Initialize the DevOps Pipeline

•	Source Control
•	Continuous Integration
•	Testing
•	Containerization
•	Deployment

Application Monitoring
•	Application Uptime
•	Memory Consumption
•	Server Response Time & Server Status
•	URL Usage
•	Issues
•	Build Statuses

	 Technical Details
	 Programming Languages
	 All Applications	 Javascript

	 Libraries
	 Frontend	 React
	 Backend	 Node.js, Express.js
	 Database	 MySQL, Sequelize ORM, Firebase

	 Development Tools
	 IDEs	 IntelliJ, WebStorm, DataGrip
	 Source Control	 Git / GitHub
	 Project Management	 GitHub
	 Continuous Integration	 TravisCI
	 Deployment	 Docker
	 Dependency Mngmt	 NPM

	 Operating Environment
	 Endor, Yggdrasil, Koma	 Docker containers within a single virtual ma-

chine on ISU’s VPN. An NGINX reverse proxy
routes requests to the appropriate container.

	 Tyr	 CLI installed via NPM.
	 Skadi	 NPM module used as a dependency in a user’s

Node application.

Functional Requirements

Node.js Application Gener-
ation with Fully-Configured
DevOps Pipeline
	 A tool that sets up the
services (such as source con-
trol, continuous integration,
and deployment) involved in
maintaining and delivering
our user’s Node.js application.

Monitoring Interface
	 A way to view build and
test histories, uptime and
health statistics, and other
reports for one of our user’s
applications.

Non-Functional Reqs

Usability
	 Simple, polished, and easy
to use.

Supportability
	 Deployed instance support
for Linux with Node.js 8. Web
application is cross-platform.

Reliability
	 Application uptime > 99%

Security
	 Ensure user passwords and
keys are handled safely.

Operational Environment

Automated DevOps Tools
	 Our tools are published to
npm, which can be installed
and ran on our user’s ma-
chines.

Server Instances
	 Developed cross-platform.
Deployed on an Ubuntu 16.04
virtual machine on ISU’s VPN.

Source code
	 GitHub, as an open source
project, which allows users to
build our project from source.

Testing

Ve
ri

fic
at

io
n

A
ct

iv
it

ie
s

Unit Testing
Individual components
tested using Mocha

Integration Testing
Components tested after
integration using Mocha
and Chai

Manual Testing
Required for most UI
features and third-party
integration testing

Acceptance Testing
Developers ensured all
features aligned with client
requirements

Code Review
Code written in feature
branches and reviewed by
another dev before merg-
ing to master

Write unit and integration tests for new features where
possible. Where not possible, use manual testing. Tests
and linting run in TravisCI upon push to GitHub. Code must
pass review, pass lint, and pass tests before being merged.

Static Analysis
ESLint used for static
analysis. Extended linting
rules used by Airbnb.

St
ra

te
gy

Network Diagram

Frontend Server
hammer-io-test

Hammer-IO
Client

Firebase
Data Store

User’s Application
(Hosted on Heroku)

User’s
Client

Backend Server
api-hammer-io-test

Data Collection Server
koma-hammer-io-test

ISU’s Network
(*.ece.iastate.edu)

Outside Networks

Official Website
https://hammer-io.github.io

Take it for a spin!
http://hammer-io-test.ece.iastate.edu

By the Numbers
(as of 4/20/2018)

Developers:				 5
Systems:					 6
Issues Opened:			 360
Issues Closed:			 313
Git Commits:				 926
Lines of Code for Tracked Files:
							 189,608

Components
Tyr				 A Node.Js application generator with
					 automated DevOps initialization
Yggdrasil		 A web interface to monitor the health and
					 status of deployed Tyr applications
Endor			 The backend server
Koma			 A microservice to collect and aggregate
					 monitoring data sent by user applications
Skadi			 A Node.Js module acting as middleware
					 in an Express application to stream
					 monitoring data to Koma

Project Goals
(Design Requirements)

Internet

User’s Local
Machine

Backend
Web Server

(Endor)

Project Generation
Module Interface

(Tyr)

Project Generation
Command Line

Interface
(Tyr)

Source Control
(GitHub)

Cloud
Hosting

(Heroku)

Code Coverage
Integration

Continuous
Integration
(TravisCI)

Run Tests

Docker Container

Deployed
Application

DevOps
Monitoring
Platform

(Yggdrasil)

Data
Aggregation

Service
(Koma)

Skadi

MySQL
Database

Firebase
Realtime
Database

MySQL
Database

project API keys

get/set project API keys

Monitor
Project

Generate
project
files

Generate project files

User Projects

Creates repository
and pushes to

Enables

Hooks into

Monitoring data for application
heartbeats, OS data, and HTTP

request data. Project monitoring
for test results, build statuses,

and source control
activity

Deploys

